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Abstract – The main objective is the accurate detection of the 

lung boundary and tuberculosis screening using chest 

Radiographs. In existing system different methods are specified 

like rule based methods, pixel classification methods and 

deformable model based methods. These methods have mostly 

heuristic assumptions and it provides only approximate 

solutions. In proposed method a robust lung segmentation 

system is introduced for chest X-ray images. Non-rigid 

registration-driven robust lung segmentation method using 

following methods. The method consists of three main stages: 1) 

first a content-based image retrieval approach for identifying 

training images and shape similarity measure with GLCM 

Metrics to measure matrix of frequencies at which pixels . 

Separated by a certain vector and intensity of a pixel in position 

of images, then creating the initial patient-specific anatomical 

model of lung shape using SIFT-flow for deformable registration 

of training masks to the patient CXR. Extracting refined lung 

boundaries using a level set optimization approach with a 

customized energy function.   

Index Terms – Chest X-ray imaging, computer-aided detection, 

Image registration, image segmentation, tuberculosis (TB). 

1. INTRODUCTION 

Detecting the lung regions in chest X-ray images is an 

important component in computer-aided diagnosis (CAD) of 

lung health. In certain diagnostic conditions the relevant 

image-based information can be extracted directly from the 

lung boundaries without further analysis. For example, shape 

irregularity, size measurements, and total lung volume 

provide clues for serious diseases such as cardiomegaly, 

pneumothorax, pneumoconiosis, or emphysema. In the case of 

CAD-based identification of lung diseases, accurate lung 

boundary segmentation plays an important role in the 

subsequent stages of automated diagnosis. This system is 

being developed as part of a project aimed at screening of 

tuberculosis (TB) patients in regions of the world with high 

incidence of disease but inadequate healthcare facilities. The 

initial screening region will be rural areas of western Kenya, 

using light weight portable X-ray scanners. The shortage of 

radiological infrastructure and radiologists in rural areas of 

Kenya necessitates an automated TB screening approach in 

such resource constrained regions. One of the important steps 

in automatic analysis of chest X-ray images is to detect the 

lung boundaries accurately. There are a number of anatomical 

challenges and subtle cues involved in segmenting the lung 

region within a CXR. In this paper, we present a lung 

boundary detection system incorporating non-rigid 

registration with a CXR database of presegmented lung 

regions to build an anatomical atlas as a guide combined with 

graph cuts based image region refinement. The initial work is 

significantly expanded in this paper to incorporate a 

deformable anatomical lung model using a novel non-rigid 

registration approach based on SIFT-flow, a detailed 

assessment of the approach compared to other state-of-the-art 

methods using the validated Japanese Society of Radiological 

Technology (JSRT) dataset and further experimental 

validation of the approach using two additional CXR 

databases. 

 

2. PATIENT- SPECIFIC STATISTICAL LUNG ATLAS 

MODEL USING NONRIGID REGISTRATION 

Segmentation in medical imaging poses a number of 

challenges including multiplicative noise, motion during 

imaging, sampling artifacts caused by the acquisition 

equipment, low contrast, deformation of tissues and 

anatomical shape variations due to normal anatomy and 

disease. Therefore, classical segmentation techniques, which 

make simplifying assumptions of rigid motion or additive 

noise for example, and do not use a priori information, 

usually produce unsatisfactory results on medical images. In 

order to provide a priori information for improved 

segmentation, we incorporate a lung atlas model into the 

system. Since the X-ray images contain variable lung shapes, 

a static model is not sufficient to describe the lung regions. 

Our system therefore estimates a statistical model for each 

patient X-ray using a training set of segmented images 
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(atlases) to identify the most similar images followed by a 

non-rigid registration algorithm to warp the most similar 

training masks to the patient CXR. 

 

 CBIR Paradigm for Inter-Patient Matching 

 SIFT-Flow Deformable Warping of Lung Atlas 

2.1. CBIR Paradigm for Inter-Patient Matching 

We first identify a small subset of images (i.e., five) in the 

training database that are most similar to the patient query 

image, using a content-based image retrieval (CBIR) inspired 

approach, and use this subset of training images including 

corresponding lung masks to develop a patient-specific lung 

model. Using a small subset of images from the database is 

sufficient to build an accurate lung model while significantly 

speeding up the step of non-rigid registration between the 

training and the patient query images. Ranking precedes 

registration, otherwise we would need to extract SIFT features 

and compute SIFT-flow deformable registration models for 

every image in an extensive training database which is 

prohibitively expensive and impractical for a fieldable system. 

Unlike other patient-specific lung models in the literature that 

use intra patient image information , we develop an 

interpatient matching and image retrieval system that follows 

the CBIR paradigm to guide segmentation. CBIR systems are 

designed to be fast for online retrieval applications with an 

offline preprocessing step to extract signature features for 

each image in the database and can incorporate multimodal 

information to improve precision.  

CBIR systems usually produce a ranked subset of images 

most similar to the query which in our case is a new patient 

CXR image. We assume that the CXR database has been 

appropriately preprocessed and consists of globally aligned 

and normalized CXRs. We use partial Radon transforms, or 

orthogonal projection profiles, to compare and rank the 

similarity between two patient’s lung images. The Radon 

transform projection along an arbitrary line in the - plane is 

defined as 

 

𝑅(𝜌, 𝜃) = ∬ 𝐼(𝑥, 𝑦)𝛿(𝜌

− 𝑥 cos 𝜃 − 𝑦 sin 𝜃)𝑑𝑥𝑑𝑦                      (1) 

Where is the 2-D impulse function 

 

∬ 𝛿(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − 1                                                    (2)
∞

−∞

 

And has the shifting property 

 

∬ 𝐼(𝑥, 𝑦)𝛿(𝑥 − 𝑥0,

∞

−∞

𝑦 − 𝑦0)𝑑𝑥𝑑𝑦 = 𝐼(𝑥0, 𝑦0)      (3) 

 

With 

𝛿(𝑥, 𝑦) = {
∞,   𝑖𝑓 𝑥 = 𝑦 = 0
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                      (4) 

      

The partial Radon transform projection method is fast to 

compute and only an approximate matching atlas set of lung 

segmentations from the CXR database is needed to compute a 

spatial prior that can be refined in the subsequent phase of the 

algorithm. Our X-ray sets contain only a small number of 

slightly rotated images. The Spatial Filter process in 

TNTmips (Image / Filter / Spatial Filter) includes a set of 

Gray Level Co-occurrence Matrix filters designed to extract 

information about the texture of an image. For a grayscale 

image (or component of a color image), image texture is 

defined by the amount, spatial scale, and spatial pattern of 

variation in brightness values. Some areas of a grayscale 

image may show little variation in brightness (gray level) over 

large areas; these areas appear visually smooth. Other image 

areas may show many large changes in gray level over short 

distances, and appear visually rough. Texture can be used 

along with other characteristics in image classification 

operations. Gray Level Co-occurrence Matrix (GLCM) filters 

operate by computing, for each filter window position, how 

often specific pairs of image cell values occur in neighboring 

cell positions (such as one cell to the right). The results are 

tabulated in a co-occurrence matrix, and specific statistical 

measures are computed from this matrix to produce the 

filtered value for the target cell. The registration performance 

is significantly improved when a personalized lung model is 

designed by comparing the patient X ray with presegmented 

lung images in the Fig. 3. Plots show the Radon transform 

profiles for a query and database image, for, left image, and, 

for the right image. CXR database using a fast shape 

similarity measure based on partial Radon transforms. 

2.2. SIFT-Flow Deformable Warping of Lung Atlas 

Image registration is an important task for many medical 

applications such as comparing/fusing images from different 

modalities, tracking temporal changes in medical images 

collected at different times. A registration scheme calculates a 

transformation mapping from source image to target image by 

matching corresponding pixels of images. Correspondences 

can be calculated either for each pixel or only for salient 

locations such as edge points or corners. Should be modelled 

efficiently. The SIFT-flow algorithm models local gradient 

information of the observed image using the Scale Invariant 

Feature Transform (SIFT). The SIFT features of the X-rays 

are calculated as follows. First, the gradient orientations and 

magnitudes are computed at each pixel. The gradients are 

weighted by a Gaussian pyramid in a region (e.g.,) in order to 

increase the influence of the gradient in the center. Then, the 

regions are subdivided into (e.g.,) quadrants. In each quadrant, 

a gradient orientation histogram is formed by adding the 

gradient values to one of eight orientation histogram bins. The 

concatenation of orientation histograms of the quadrants form 
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the SIFT descriptor vector for the center pixel of the region. 

Once we have calculated the SIFT features for the image pair, 

the registration algorithm computes pixel-to-pixel 

correspondences by matching the SIFT descriptors. The 

correspondence matching is formulated using the following 

objective function: 

 

E(w) = ∑ min (||𝑆1(𝑝) − 𝑆2(𝑝 + 𝑤(𝑝)||, 𝑡)

𝑝∈𝑃

+ ∑(u|p| + v|p|))

𝑝

+ ∑ min(|𝑢(𝑝) − 𝑢(𝑞)|, 𝑑)

(𝑝,𝑞)∈𝑁

+ min(|𝑣(𝑝) − 𝑣(𝑞)|, 𝑑))                (6) 

 

Where is the set of pixels in the X-ray; is the spatial 

neighborhood set, and are the SIFT images in which each 

pixel is represented by a SIFT descriptor vector; are the flow 

vectors at and are the truncated thresholds. The minimization 

algorithm calculates the SIFT-flow by minimizing the 

objective function. The first term of the objective function 

forces the algorithm to match pixels according to their SIFT 

descriptors, with warping based on the registration flow 

vector. The second term constrains the flow vectors to be as 

small as possible.  

The third term constrains the flow vectors of neighboring 

pixels to be similar. The registration algorithm that we 

employed applies the transformation mapping for each pixel 

independently. Therefore, the registered masks forming the 

lung atlas model have rough boundaries. We use cubic spline 

interpolation to obtain smoother boundaries of the lung 

masks. 

 In order to preserve the important regions of the lung 

boundary such as cost phrenic angle regions, instead of equal 

sampling, we extract the critical points  

Some of them focused on registering different views of the 

same scene in which a relatively simple transformation will 

be sufficient for registration.  

In our case, in order to create a lung model, we register chest 

X-rays from different patients of the contour by using the 

computed patient specific lung model is a probabilistic shape 

prior in which each pixel value is the probability of the pixel 

being part of the lung field. 

 

K(𝑠1, 𝑠2)

=
|𝜃(𝑠1, 𝑠2) − 180|𝑙(𝑠1)𝑙(𝑠2)

𝑙(𝑠1) + 𝑙(𝑠2)
                  (7) 

 
Figure. 2 illustrates the registration stage of the proposed 

system. 

Fig. 2(b) is the patient X-ray. Fig. 2(a) is the most similar X-

ray to the patient X-ray in the database chosen according to 

the shape similarity between the lungs. The SIFT-flow 

algorithm calculates corresponding matches for each pixel of 

these X-ray pair by solving the flow vectors. Colored markers 

indicate corresponding matches for a few pixel samples. We 

see that the lung boundary in one X-ray image approximately 

matches the lung boundary in the other X-ray. The spatial 

shifts between corresponding matches define the 

transformation mapping for pixels. The algorithm applies the 

transformation mapping by simply shifting each pixel in the 

training mask according to the calculated shift distance [Fig. 

2(c)]. The registered mask is shown in Fig. 2(d). The 

registration stage is repeated for each of the top- (e.g.,) similar 

X-rays to the patient X-ray. The lung model for the patient X-

ray is built-up using the mean of the top-ranked probability of 

the pixel being part of the lung field. Where denotes the line 

segment between and denotes the line segment between and is 

the outer turn angle between and are the length of and, 

respectively. This measure aims to remove points with short 

and straight neighboring line segments. The iteration is 

terminated when the number of critical points reaches a 

prespecified value. 
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3. PORPOSED MODELLING  

The system detects the lung boundary of X-ray images using 

image properties and the lung model calculated in the 

previous stage. We perform image segmentation using level 

set formulation the active contour is a oving front denoted by 

C which is represented implicitly by the zero level set C(t) = 
f(~x)jÁ(t; ~x) = 0g of a level set function Á(t; ~x). The 

proposed adaptive stopping force which allows the contour to 

bridge the invalid features and stop only at the valid ones. Our 

approach builds on the work of that proposed a robust 

parametric active contour able to discard outlier features. The 

features used are connected sets of edge points, called strokes, 

which are more reliable than edge points. 

3.1 Contour initialization 

The contour is automatically initialized at the outer chest wall, 

by a very simple yet effective method. The binary image 

obtained by gray-level thresholding using Otsu’s method that 

was used to detect edges is processed by a morphological 

flood filling operation to remove wholes. Then, the region 

with the largest area is retained and the initial contour is 

placed around this region. Furthermore, the edges outside this 

region are removed to prevent them from attracting the 

contour.  

The features used are connected sets of edge points, called 

strokes, which are more reliable than edge points. 

We will start by introducing some notation. Let y be the set of 

all edge points detected in an image and let us assume that y is 

organized in connected components, called strokes, yj ; j = 1; 
:::;N where yj = fyj 1; :::; yjn g is the set of edge points 

belonging to the j-th stroke. A standard edge linking 

algorithm is used to compute the image strokes. 

The automatic segmentation of the lungs in X-ray computed 

tomography (CT) images using level set segmentation. Level 

set methods usually produce over segmented images of the 

lungs due to the presence of outliers features. 

 

(a) 

 

(b) 

Figure. 3 illustrates the registration and segmentation stage of 

the proposed system. 

Fig. 3(a) is contour image registration stage. Fig. 3(b) is the 

patient X-ray’s detected image.  

4. RESULTS AND DISCUSSIONS 

In this section all the results and the discussions should be 

made.  

 

Figure 1 Resultant Graph of the Proposed System 

5. CONCLUSION 

We have presented a robust lung boundary detection method 

that is based on a patient-specific lung atlas using fast partial 

Radon profile similarity selection and SIFT-flow non-rigid 

registration with refinement using a level set segmentation 

algorithm. We evaluated the algorithm using three different 

datasets containing 585 chest radiographs from patients with 

normal lungs and various pulmonary diseases. On the publicly 

available JSRT dataset, experimental results showed an 

accuracy of 95.4% (overlap measure), compared to the expert 

segmentation gold standard, which is the highest machine 

performance reported in the literature. On the other CXR 

datasets from Montgomery County and India, with more 
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challenging pathologies including abnormal lung boundaries, 

the same algorithm shows consistently high detection 

accuracies of 94.1% and 91.7%, respectively. These are the 

first results reported for automatic lung boundary 

segmentation that include abnormal lung shapes. The results 

indicate the robustness and effectiveness of the proposed 

approach when applied to CXRs collected in different 

geographical regions. A point to note here is that fluid-filled 

lungs are radio-opaque, and any radiologist-marked “ground-

truth” lung boundary is only an estimate.  
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